
Processo de Desenvolvimento

As 6 melhores praticas de desenvolvimento 

de software e “Rational Unified Process”

(RUP)

José Lopes dos Santos Neto

Tecnologia de Produto

jlneto@mcfox.com.br



Objectives

 Explain the Six Best Practices

 Present the Rational Unified Process within 
the context of the Six Best Practices



Why Are We Here?

The GOAL is to deliver

quality products 

on time and on budget

which meet the customer’s
real needs.



Symptoms of Software Development Problems

 Inaccurate understanding of end-user needs

 Inability to deal with changing requirements

 Modules that don’t fit together

 Software that’s hard to maintain or extend

 Late discovery of serious project flaws 

 Poor software quality

 Unacceptable software performance

 No coordinated team effort 

 An unreliable build-and-release process



Root Causes of Software Development Problems

 Insufficient requirements management

 Ambiguous and imprecise communications

 Brittle architectures 

 Overwhelming complexity

 Undetected inconsistencies among requirements, 
designs, and implementations

 Insufficient testing

 Subjective project status assessment

 Delayed risk reduction due to waterfall 
development 

 Uncontrolled change propagation

 Insufficient automation



Best Practices

Develop 
Iteratively

Manage 
Requirements

Use Component 
Architectures 

Model Visually 
(UML)

Continuously 
Verify Quality

Control Changes 
(UCM) 

Root Causes

insufficient 
requirements

ambiguous 
communications

brittle architectures 

overwhelming 
complexity

undetected 
inconsistencies 

poor testing

subjective assessment

waterfall development 

uncontrolled change

insufficient 
automation

Symptoms

needs not met

requirements churn

modules don’t fit

hard to maintain

late discovery

poor quality

poor performance

colliding developers 

build-and-release

Addressing Root Causes Eliminates the Problems



Practice 1: Develop Software Iteratively

Develop Iteratively

Manage Requirements

Model Visually

Use Component 
Architectures

Continuously

Verify Quality

Control Change

Best
Practices



You Can’t Know Everything Initially

 An initial design will likely be flawed with 
respect to its key requirements

 Late-phase discovery of design defects 
results in costly over-runs and/or project 
cancellation 

The time and money spent implementing a 
faulty design are not recoverable

$$$



Waterfall Development Characteristics

 Delays confirmation of 
critical risk resolution 

 Measures progress by 
assessing work-
products that are poor 
predictors of time-to-
completion

 Delays and aggregates 
integration and testing

 Precludes early 
deployment

 Frequently results in 
major unplanned 
iterations

Code and unit test

Design

Subsystem integration

System test

Waterfall Process

Requirements   
    analysis



Conventional Software Process

Integration
Begins

Late Design
Breakage

100%

Project Schedule

D
e

v
e

lo
p

m
e

n
t 

P
ro

g
re

s
s

(%
 c

o
d

e
d

)

Original
Target Date

Sequential activities:
Requirements        Design        Code        Integration       Test



Iterative Development Characteristics

 Resolves major risks before making large investments 

 Enables early user feedback  

 Makes testing and integration continuous 

 Focuses project short-term objective milestones 

 Makes possible deployment of partial implementations

T   I   M   E

Iteration 1 Iteration 2 Iteration 3 

I

C

D

R

T
I

C

D

R

T

I

C

D

R

T



Iterative Development Produces an Executable

Initial
Planning

Planning

Requirements

Analysis & Design

Implementation

Test

Deployment

Evaluation

Management
Environment

Each iteration 
results in an 
executable release



Manage Requirements

Practice 2: Manage Requirements

Develop Iteratively

Model Visually

Use Component 
Architectures

Continuously

Verify Quality

Control Change

Best
Practices



Aspects of Requirements Management

 Analyze the Problem

 Understand User Needs

 Define the System

 Manage Scope

 Refine the System Definition

 Build the Right System



Problem

Solution 

Space

Problem 

Space

Needs

Features

Use Cases and 

Software

Requirements

Test 

Procedures Design User 

Docs

The 

Product 

To Be 

Built

Map of the Territory



Requirements are dynamic -- 
They will change during 

development

Manage Changing Requirements

 Establish the baseline  - 
elicit, organize, and 
document functionality and 
constraints

 Evaluate changes and 
determine their impact

 Track and document 
tradeoffs and decisions 



Practice 5: Continuously Verify Software Quality

Continuously 

Verify Quality

Develop Iteratively

Manage Requirements

Model Visually

Use Component 
Architectures

Control Change

Best
Practices



Iterative Development Benefits Testing

Require-
ments 
Capture

Project
Planning

Analysis 
and Design Implementation

Plan
 Test

Design
 Test

Implement Test Exec. Exec.

Evaluate Test

Iteration X + 1

Build Build

Iteration X

Iteration X + 2

Testing:

▪ Starts earlier

▪ Is continuous

Result:  

Higher Quality

Lower Risk



UML Model and 

Implementation

Tests

Test Each Iteration: Functionality & Performance

Test Suite 1

Iteration 1 Iteration 2

Test Suite 2

Iteration 4

Test Suite 4

Iteration 3

Test Suite 3



13,000 Tests

6 hours

1 Person

One Manual Test Cycle

13,000 Tests  2 Weeks  6 People

Test

Automation

Run More Tests More Often

Automation Reduces Testing Time and Effort



Why Have a Process?

 The Rational Unified Process is a means of 
achieving Best Practices

 Provides guidelines for efficient 
development of quality software

 Reduces risk and increases predictability 

 Promotes a common vision and culture

 Captures and institutionalizes best practices



Process Structure

 Two orthogonal structures

 Organization along time

▪ Lifecycle structure: phase, iterations

▪Process enactment: planning, executing

▪Activity management, project control

 Organization based on content

▪Workers, artifacts, activities, workflows

▪Process configuration, process enhancement



Organization Along Time

Time



Phases: Objectives

Inception Elaboration Construction Transition

Establish project scope 
and boundary 
conditions.

Determine the use 
cases and primary 
scenarios that will drive 
the major design trade-
offs. 

Demonstrate a 
candidate architecture 
against some of the 
primary scenarios.

Estimate the overall 
cost and schedule. 

Identify potential risks 
(the sources of 
unpredictability).

Define and 
validate the 
architecture

Create a 
detailed plan for 
the construction 
phase. 

Demonstrate 
that the 
architecture will 
support the 
vision at a 
reasonable cost 
in a reasonable 
period of time.

Minimizing 
development 
costs by 
optimizing 
resources and 
avoiding 
unnecessary 
scrap and rework

Achieving 
adequate quality 
as rapidly as is 
practical 

Achieving 
useful versions 
(alpha, beta, and 
other test 
releases)

Achieving user 
self-
supportability 

Achieving 
stakeholder 
concurrence that 
deployment are 
complete and 
consistent with 
the evaluation 
criteria of the 
vision

Achieving final 
product as 
rapidly and cost 
effectively as 
possible 

time

(Understand the problem) (Understand the solution) (Have a solution)



Phases and Iteration

Commit resources for the 

elaboration phase 

Commit resources 

for construction

Product sufficiently mature for 

customers to use

(Understand the problem) (Understand the solution) (Have a solution)

Acceptance

or end of life

Planned (Business) Decision Points

Preliminary

Iteration

Architect.

Iteration

Architect.

Iteration

Devel. 

Iteration

Devel. 

Iteration

Devel. 

Iteration

Transition

Iteration

Transition

Iteration

Planned (Technical) Visibility Points

Inception Elaboration Construction Transition



Phases: Outcome

Inception Elaboration Construction Transition

▪Vision document

▪Use case model 
survey

▪Initial glossary

▪Initial risk 
assessment

▪Project plan

▪A use-case 
model (80% 
complete) - 

▪Supplementa
ry 
requirements 

▪An 
executable 
architecture 

▪Revised 
business case

▪Revised risk 
list

▪Development 
plan

▪The software 
product, 
integrated on 
the adequate 
platform. 

▪User manual 
as necessary 

▪A description 
of the current 
release

•Setup 

Instructions

•Setup programs

•Release 

Documentation

Product 

Release

time

(Understand the problem) (Understand the solution) (Have a solution)



One iteration

In an 

iteration, 

you walk 

through all 

workflows



Organization Based on Content
C

o
n

te
n
t



Nine Core Process Workflows - “Disciplines”

D:\Courses\USP\K2\hump.bmp

http://spdeves01/RationalUnifiedProcess/


Summary: Best Practices of Software Engineering

 Best Practices guide software engineering 
by addressing root causes

 Process guides a team on what to do, how 
to do it, and when to do it

 The Rational Unified Process is a means of 
achieving Best Practices


	Slide 1: Processo de Desenvolvimento
	Slide 2: Objectives
	Slide 3: Why Are We Here?
	Slide 4: Symptoms of Software Development Problems
	Slide 5: Root Causes of Software Development Problems
	Slide 6: Addressing Root Causes Eliminates the Problems
	Slide 7: Practice 1: Develop Software Iteratively
	Slide 8: You Can’t Know Everything Initially
	Slide 9: Waterfall Development Characteristics
	Slide 10: Conventional Software Process
	Slide 11: Iterative Development Characteristics
	Slide 12: Iterative Development Produces an Executable
	Slide 13: Practice 2: Manage Requirements
	Slide 14: Aspects of Requirements Management
	Slide 15: Map of the Territory
	Slide 16: Manage Changing Requirements
	Slide 17: Practice 5: Continuously Verify Software Quality
	Slide 18: Iterative Development Benefits Testing
	Slide 19: Test Each Iteration: Functionality & Performance
	Slide 20: Automation Reduces Testing Time and Effort
	Slide 21: Why Have a Process?
	Slide 22: Process Structure
	Slide 23: Organization Along Time
	Slide 24: Phases: Objectives
	Slide 25: Phases and Iteration
	Slide 26: Phases: Outcome
	Slide 27: One iteration
	Slide 28: Organization Based on Content
	Slide 29: Nine Core Process Workflows - “Disciplines”
	Slide 30: Summary: Best Practices of Software Engineering

